

AIT Lablink FMU Simulator

This package provides Lablink clients that can import and execute Functional Mock-up Units (FMUs), i.e., co-simulation components compliant to the Functional Mock-up Interface (FMI) [https://fmi-standard.org/].
The clients in this package rely on functionality provided by the FMI++ Library [http://fmipp.sourceforge.net].

Because FMUs may implement different features (model exchange and/or co-simulation) and because FMUs can be used in various synchronization schemes, this package provides several types of FMU simulators.
Each FMU simulator has a different approach for synchronization (fixed step, discrete event, etc.) and its usefullness for any application depends highly on the specific requirements (especially the synchronization schedule).

[image: Lablink FMU Simulator.]
The following FMU simulators are provided by this package:

	DynamicFmuModelExchangeAsync:
This client simulates FMUs for Model Exchange and synchronizes them periodically to real time.
At each synchronization point the client updates its output ports according to the selected FMU model ouput variables.
In case an (internal) event is detected during the integration of the FMU model, the periodic synchronization schedule is adapted such that the output ports are updated at the corresponding event time.
New inputs to the client are treated as (external) events and the integration of the FMU model and the synchronization schedule is adapted accordingly.
This FMU simulator is specifically suitable for discrete event simulations, where inputs are not periodical and/or internal events of the model are of special interest.

	FixedStepFmuModelExchangeAsync:
This client simulates FMUs for Model Exchange and synchronizes them strictly periodically to real time.
Inputs to the model are delayed to the next synchronization point.
In case an (internal) event is detected during the integration of the FMU model, the event is handled properly, but the outputs of the client are not updated.
This FMU simulator is specifically suitable for fixed-step simulations, where inputs and/or outputs of the model are periodical.

Installation

Find information about the installation of the Lablink FMU simulator clients here.

Running the clients

Find basic instructions for running the clients here.

Configuration

Find the reference for writing a configuration for a Lablink FMU simulator client here.

Examples

Find step-by-step instructions for running the examples here.

Maven project dependency

The Lablink FMU simulator client’s compiled Java package is available on the Maven Central Repository [https://search.maven.org/artifact/at.ac.ait.lablink.clients/fmusim].
Use it in your local Maven [https://maven.apache.org] setup by including the following dependency into your pom.xml:

<dependency>
 <groupId>at.ac.ait.lablink.clients</groupId>
 <artifactId>fmusim</artifactId>
 <version>0.0.1</version>
</dependency>

Note

You may have to adapt this snippet to use the latest version, please check the Maven Central Repository [https://search.maven.org/artifact/at.ac.ait.lablink.clients/fmusim].

Installation from source

Installation from source requires a local Java Development Kit installation, for instance the Oracle Java SE Development Kit 13 [https://www.oracle.com/technetwork/java/javase/downloads/index.html] or the OpenJDK [https://openjdk.java.net/].

Check out the project and compile it with Maven [https://maven.apache.org]:

git clone https://github.com/ait-lablink/lablink-fmusim
cd lablink-fmusim
mvnw clean package

This will create JAR file fmusim-<VERSION>-jar-with-dependencies.jar in subdirectory target/assembly.
Furthermore, all required FMI++ shared library files (DLLs, SOs) will be copied to subdirectory target/natives.

Troubleshooting the installation

Error message:

[ERROR] Failed to execute goal on project fmusim: Could not resolve dependencies for project at.ac.ait.lablink.clients:fmusim:jar:0.0.1:
Could not find artifact at.ac.ait.fmipp:libfmipp:zip:natives-libfmipp-sundials-windows-release-x64:0.0.1 in central (https://repo1.maven.org/maven2)

The FMU simulator requires the FMI++ Library [http://fmipp.sourceforge.net] to be installed, including the Java bindings.
They should be avialable via the AIT Lablink repository [https://github.com/orgs/AIT-Lablink/packages].
In case they are not installed (or not for your specific OS), you can install them yourself to your local Maven repository.
To do so, follow the FMI++ instructions and additionally specify the CMake [https://cmake.org/] flag JAVA_MAVEN_INSTALL:BOOL=ON to automatically install the generated files to your local Maven repository.
In this case, you will have to include your local Maven repository to your setup (see here [https://maven.apache.org/settings.html]).

Invoking the clients from the command line

When running the clients, the use of the -c command line flag followed by the URI to the configuration (see here) is mandatory.
Furthermore, the path to the directory containing the FMI++ shared library files (by default in subdirectory target/natives when building from source) has to be added to the system path.

For example, on Windows this could look something like this:

SET FMIPP_DLL_DIR=\path\to\lablink-fmusim\target\natives
SET PATH=%FMIPP_DLL_DIR%;%PATH%

SET LLCONFIG=http://localhost:10101/get?id=
SET CONFIG_FILE_URI=%LLCONFIG%ait.test.fmusim.dynamic_me.fmu.config

SET FMUSIM=at.ac.ait.lablink.clients.fmu.DynamicFmuModelExchangeAsync
SET FMUSIM_JAR_FILE=\path\to\lablink-fmusim\target\assembly\fmusim-<VERSION>-jar-with-dependencies.jar

java.exe -cp %FMUSIM_JAR_FILE% %FMUSIM% -c %CONFIG_FILE_URI%

Overview

The configuration has to be JSON-formatted.
It is divided into the following categories:

	Client

	basic configuration of the Lablink client

	FMU

	basic configuration related to the FMU simulator

	InitialValues

	configuration of initial values of the FMU instance

	Input

	configuration of the client’s inputs, each associated to an FMU input variable

	Output

	configuration of the client’s outputs, each associated to an FMU output variable

In the following, the configuration parameters for these categories are listed.

See also

See below for an example of a complete JSON configuration.

Basic Lablink Client Configuration

Required parameters:

	ClientName

	client name

	GroupName

	group name

	ScenarioName

	scenario name

	labLinkPropertiesUrl

	URI to Lablink configuration

	syncHostPropertiesUrl

	URI to sync host configuration

Optional parameters:

	ClientDescription

	description of the client

	ClientShell

	activate Lablink shell (default: false).

FMU Simulator Configuration

Required parameters:

	URI

	URI to the FMU.
Paths can be specified as fmusim://relative/path/to/my.fmu, where the path will be interpreted relative to the path specified via system property [https://www.ibm.com/docs/en/sdk-java-technology/7?topic=customization-how-specify-javalangsystem-property] dmuDir.
For instance, using option -DfmuDir=/a/b/c when starting the plotter client and specifiying plotter://x/y/z.fmu will result in CSV files being written to directory `/a/b/c/x/y/z.fmu.

Optional parameters:

	DefaulUpdatePeriod_ms

	default period of the synchronization schedule in milliseconds (default: 1000)

	LoggingOn

	turn on/off log messages from the FMU (default: false)

	IntegratorType

	select integrator type (default: bdf):

	eu

	Forward Euler method

	rk

	4th order Runge-Kutta method with constant step size

	abm

	Adams-Bashforth-Moulton multistep method with adjustable order and constant step size

	ck

	5th order Runge-Kutta-Cash-Karp method with controlled step size

	dp

	5th order Runge-Kutta-Dormand-Prince method with controlled step size

	fe

	8th order Runge-Kutta-Fehlberg method with controlled step size

	bs

	Bulirsch-Stoer method with controlled step size

	ro

	4th order Rosenbrock Method for stiff problems

	bdf

	Backwards Differentiation formula from Sundials. This stepper has adaptive step size, error control and an internal algorithm for the event search loop. The order varies between 1 and 5. Well suited for stiff problems.

	abm2

	Adams-Bashforth-Moulton method from sundials. This stepper has adaptive step size, error control, and an internal algorithm for the event search loop. The order varies between 1 and 12. Well suited for smooth problems.

	ModelTimeScaleFactor

	simulation time scaling factor, i.e., speed-up or slow-down of progress of logical simulation time (default: 1)

	ModelStartTime_s

	start time (logical simulation time) for FMU model (default: 0)

	TimeDiffResolution_s

	resolution for resolving time differences in seconds (default: 1e-4)

Optional parameters for DynamicFmuModelExchangeAsync only (for expert users):

	NIntegratorSteps

	number of integration intervals within a synchronozation period (default: 2)

	NSteps

	number of integration steps within each integration interval for fixed-step integrators (default: 2)

Initial Value Configuration

Configuration for each FMU model variable that should be initialized with a specific (non-default) value:

	VariableName

	name of the FMU variable

	DataType

	type of the FMU variable, allowed values are double, long, boolean and string

	Value

	initial value

Input and Output Configuration

Required configuration parameters for each input/output:

	VariableName

	name of the client’s input/output port, has to correspond to an appropriate FMU variable

	DataType

	data type of the client’s input/output port, has to be compatible to the corresponding FMU variable type; allowed values are double, long, boolean and string

Optional configuration parameters for each input/output:

	Unit

	unit associated to the client’s input/output port

Example Configuration

The following is an example configuration for a DynamicFmuModelExchangeAsync client:

{
 "Client": {
 "ClientDescription": "FMU async simulator example.",
 "ClientName": "TestFMUAsync",
 "ClientShell": true,
 "GroupName": "FMUSimDemo",
 "ScenarioName": "FMUSimAsync",
 "labLinkPropertiesUrl": "http://localhost:10101/get?id=ait.all.all.llproperties",
 "syncHostPropertiesUrl": "http://localhost:10101/get?id=ait.test.fmusim.async.sync-host.properties"
 },
 "FMU": {
 "DefaulUpdatePeriod_ms": 1000,
 "IntegratorType": "bdf",
 "TimeDiffResolution": 1e-06,
 "URI": "file:///C:/Development/lablink/lablink-fmusim/src/test/resources/zigzag.fmu"
 },
 "InitialValues": [
 {
 "DataType": "double",
 "Value": 0,
 "VariableName": "integrator.y_start"
 },
 {
 "DataType": "double",
 "Value": 0.8,
 "VariableName": "k"
 }
],
 "Input": [
 {
 "DataType": "double",
 "Unit": "none",
 "VariableName": "k"
 }
],
 "Output": [
 {
 "DataType": "double",
 "Unit": "none",
 "VariableName": "x"
 },
 {
 "DataType": "double",
 "Unit": "none",
 "VariableName": "derx"
 }
]
}

Prerequisites

Required Lablink resources

The following Lablink resources are required for running the examples:

	Configuration Server [https://ait-lablink.readthedocs.io/projects/lablink-config-server]: config-0.0.1-jar-with-dependencies.jar

	Datapoint Bridge [https://ait-lablink.readthedocs.io/projects/lablink-datapoint-bridge]: dpbridge-0.0.1-jar-with-dependencies.jar

	Lablink Plotter [https://ait-lablink.readthedocs.io/projects/lablink-plotter]: plotter-0.0.1-jar-with-dependencies

When building from source, the corresponding JAR files will be copied to directory target/dependency.

Note

You also need a local copy of the FMU file zigzag.fmu [https://github.com/AIT-Lablink/lablink-fmusim/blob/main/src/test/resources/zigzag.fmu].
In case you have checked out a local copy of the lablink-fmusim repository [https://github.com/AIT-Lablink/lablink-fmusim], you can find it in the local subdirectory src/test/resources.

Starting the configuration server

Start the configuration server by executing script run_config.cmd [https://github.com/AIT-Lablink/lablink-fmusim/blob/main/examples/0_config/run_config.cmd] in subdirectory examples/0_config [https://github.com/AIT-Lablink/lablink-fmusim/tree/main/examples/0_config].
This will make the content of database file test-config.db available via http://localhost:10101.

Note

Once the server is running, you can view the available configurations in a web browser via http://localhost:10101.

MQTT broker

An MQTT broker is required for running the example, for instance Eclipse Mosquitto [https://mosquitto.org/] or EMQ [http://emqtt.io/].

Example 1: Dynamic simulation using an FMU for Model Exchange

The figure below shows the graphical representation of the zigzag model used in this example.
It comprises an integrator, whose input is a constant (model input variable k), and a hysteresis controller, which switches the sign of k in case the integrator’s output variable x crosses a certain threshold (low: -1, high: 1).
The resulting output is a zigzag pattern (hence the model name).
The model has been compiled with Dymola [https://en.wikipedia.org/wiki/Dymola] into an FMU for Model Exchange, which can be found in subdirectory src/test/resources [https://github.com/AIT-Lablink/lablink-fmusim/tree/main/src/test/resources].

[image: Modelica model zigzag.]
To run the example, edit attribute FMU.URI in the FMU simulator client configuration ait.test.fmusim.dynamic_me.fmu.config to match the absolut path of the FMU file (located in your local subdirectory src/test/resources).
Use for instance DB Browser for SQLite [https://sqlitebrowser.org/] to edit the configuration.

All relevant scripts can be found in subdirectory examples/1_dynamic_me [https://github.com/AIT-Lablink/lablink-fmusim/tree/main/examples/1_dynamic_me].
To run the example, execute all scripts either in separate command prompt windows or by double-clicking:

	fmusim.cmd [https://github.com/AIT-Lablink/lablink-fmusim/blob/main/examples/1_dynamic_me/fmusim.cmd]: runs the FMU simulator

	dpb.cmd [https://github.com/AIT-Lablink/lablink-fmusim/blob/main/examples/1_dynamic_me/dpb.cmd]: runs the datapoint bridge service, connecting the FMU simulator and the plotter

	plot.cmd [https://github.com/AIT-Lablink/lablink-fmusim/blob/main/examples/1_dynamic_me/plot.cmd]: runs the plotter, which will plot incoming data

Note

The order in which the scripts are started is arbitrary.

Once the FMU simulator client starts up, the client shell can be used to interact with the FMU model.
For instance, input variable k of the FMU model can be changed:

llclient> svd k .3
Success
llclient> svd k 3
Success

An example of how the FMU reacts on these inputs can be seen in the following figure.

[image: Dynamic simulation results zigzag.]

Example 2: Fixed-step simulation using an FMU for Model Exchange

This example uses the same zigzag model as the previous example.

To run the example, edit attribute FMU.URI in the FMU simulator client configuration ait.test.fmusim.fixedstep_me.fmu.config to match the absolut path of the FMU file (located in your local subdirectory src/test/resources).
Use for instance DB Browser for SQLite [https://sqlitebrowser.org/] to edit the configuration.

All relevant scripts can be found in subdirectory examples/2_fixedstep_me [https://github.com/AIT-Lablink/lablink-fmusim/tree/main/examples/2_fixedstep_me].
To run the example, execute all scripts either in separate command prompt windows or by double-clicking:

	fmusim.cmd [https://github.com/AIT-Lablink/lablink-fmusim/blob/main/examples/2_fixedstep_me/fmusim.cmd]: runs the FMU simulator

	dpb.cmd [https://github.com/AIT-Lablink/lablink-fmusim/blob/main/examples/2_fixedstep_me/dpb.cmd]: runs the data point bridge service, connecting the FMU simulator and the plotter

	plot.cmd [https://github.com/AIT-Lablink/lablink-fmusim/blob/main/examples/2_fixedstep_me/plot.cmd]: runs the plotter, which will plot incoming data

Note

The order in which the scripts are started is arbitrary.

Once the FMU simulator client starts up, the client shell can be used to interact with the FMU model.
For instance, input variable k of the FMU model can be changed:

llclient> svd k 0.3
Success

An example of how the FMU reacts on these inputs can be seen in the following figure.
Notice the differences to the previous example, where the FMU simulator did update the outputs not only at strictly periodic intervals.

[image: Fixed step simulation results zigzag.]

Index

 nav.xhtml

 Table of Contents

 		
 AIT Lablink FMU Simulator

_static/file.png

_static/minus.png

_static/plus.png

_images/zigzag_dynamic_results.png
(2] FMU Outout

FMU output

BlW|FIE|

Pause

1

25

20

15

10

10

15

20

28

20

4 5 B 7 8 8 10 11 12 13 14 1§ 16 17 18 19 20 21 22 23 24 25 28 27 28 20 30 3 32 33 34 35 3
PR

X
dert =

_images/zigzag_fixedstep_results.png
FMU output

4 FMU Outout

BlW|FIE|

Pause

10

15

20 25

£l

35

40

45

runtime in's

50

55

60

65

70

75

a0

X
dert =

_images/fmu_sim_example.png

_images/zigzag_model.png
product integrator hysteresis. switch1
=1

constt

derx

