

AIT Lablink Plotter

This package provides Lablink clients that visualize data as plotted graphs in a separate window.
These plotted graphs are continuously updated while the client is running, showing the input data as a function of time.

The Lablink clients provided by this package are:

	PlotterAsync: this client runs asynchronously and plots new data points as a function of wall-clock time

	PlotterSync: this client runs synchronoulsy (i.e., synchronized by a sync host [https://github.com/AIT-Lablink/lablink-sync-host]) and plots new data points as a function of synchronization time

[image: Lablink plotter client.]

Installation

Find information about the installation of the Lablink plotter clients here.

Running the clients

Find basic instructions for running the clients here.

Configuration

Find the reference for writing a configuration for a Lablink plotter client here.

Examples

Find step-by-step instructions for running the examples here.

Maven

The Lablink plotter’s compiled Java package is available on the Maven Central Repository [https://search.maven.org/artifact/at.ac.ait.lablink.clients/plotter].
Use it in your local Maven [https://maven.apache.org] setup by including the following dependency into your pom.xml:

<dependency>
 <groupId>at.ac.ait.lablink.clients</groupId>
 <artifactId>plotter</artifactId>
 <version>0.0.2</version>
</dependency>

Note

You may have to adapt this snippet to use the latest version, please check the Maven Central Repository [https://search.maven.org/artifact/at.ac.ait.lablink.clients/plotter].

Building from source

Installation from source requires a local Java Development Kit installation, for instance the Oracle Java SE Development Kit 13 [https://www.oracle.com/technetwork/java/javase/downloads/index.html] or the OpenJDK [https://openjdk.java.net/].

Check out the project and compile it with Maven [https://maven.apache.org]:

git clone https://github.com/AIT-Lablink/lablink-plotter.git
cd lablink-plotter
mvnw clean package

This should create JAR file plotter-<VERSION>-jar-with-dependencies.jar in subdirectory target/assembly.
Also, all additional Lablink resources needed for running the examples will be copied to directory target/dependency.

Invoking the clients from the command line

When running the clients, the use of the -c command line flag followed by the URI to the configuration (see here) is mandatory.

For example, on Windows this could look something like this:

SET PLOT=at.ac.ait.lablink.clients.plotter.PlotterSync
SET LLCONFIG=http://localhost:10101/get?id=
SET CONFIG_FILE_URI=%LLCONFIG%ait.test.plotter.sync.config
SET MEMORY_FLAG=-Xmx1024M
java.exe %MEMORY_FLAG% -cp \path\to\plotter-<VERSION>-jar-with-dependencies.jar %PLOT% -c %CONFIG_FILE_URI%

Overview

The configuration has to be JSON-formatted.
It is divided into the following three categories:

	Client

	basic configuration of the Lablink client (JSON object)

	Input

	configuration of the client’s inputs, each visualized as individual dataset (JSON array of JSON objects)

	Plot

	configuration of the plot (JSON object)

In the following, the configuration parameters for these categories are listed.

See also

See below for an example of a complete JSON configuration.

Client configuration

General client configuration

	ClientName

	client name

	GroupName

	group name

	ScenarioName

	scenario name

	labLinkPropertiesUrl

	URI to Lablink configuration

	syncHostPropertiesUrl

	URI to sync host configuration

	ClientDescription

	description of the client (optional)

	ClientShell

	activate Lablink shell (optional, default: false).

Data plotted to the screen can also be stored as timeseries in CSV files.
This can be configured individually for each input of the plotter (see parameter WriteToFile of the input configuration).
The following parameters determine the general configuration of the CSV output, which is applied to all data written to CSV files.

CSV output configuration

	WriteDataDirURI

	Specify in which directory to write the CSV output files as URI.
If the specifed directory does not exist, the plotter will try to create it.
If not specified, CSV files are written to the current working directory.
Paths can be specified as plotter://relative/path/to/dir, where the path will be interpreted relative to the path specified via system property [https://www.ibm.com/docs/en/sdk-java-technology/7?topic=customization-how-specify-javalangsystem-property] dataDir.
For instance, using option -DdataDir=/a/b/c when starting the plotter client and specifiying plotter://x/y/z will result in CSV files being written to directory `/a/b/c/x/y/z.
(optional)

	WriteDataTimestamp

	If true, the timeseries written to the CSV files use timestamps.
Otherwise, the elapsed time since starting the plotter is used.
(optional, default: false)

Input configuration

Configuration for each input

	InputID

	name of the input, used in plot legend

	DataType

	data type of the input, allowed values are double and long

	Unit

	unit associated to the input, used in plot legend (optional)

	LineStyle

	string specifying the color for points, allowed values are solid, dotted, dashed, dotdashed and dotdotdashed (optional, default: solid)

	MarksStyle

	set the marks style, allowed values are none, points and dots (optional, default: dots)

	Connected

	if true, subsequent points in the plot are connected with a line (optional, default: true)

	Impulses

	if true, then a line will be drawn from any plotted point down to the x axis (optional, default: false)

	WriteToFile

	if true, then new values will not only be plotted to the screen but also written to a CSV output file called “<InputID>.csv” (optional, default: false)

Plot configuration

Note

Either AutomaticRescale has to be set to true or XMin, XMax, YMin and YMax have to be specified!

	AutomaticRescale

	if true, axes are rescaled automatically at runtime to fit all data on the plot canvas

	XMin

	left bound of x-axis

	XMax

	right bound of x-axis

	YMin

	lower bound of y-axis

	YMax

	upper bound of y-axis

Other parameters:

	Title

	title of the plot (optional, default: Plotter)

	XLabel

	x-axis label (optional, default: time)

	YLabel

	y-axis label (optional, default: value)

	DisplayGrid

	control whether the grid is drawn (optional, default: true)

	PersistencePoints

	a positive argument sets the persistence of the plot to the given number of points, calling with a zero argument turns off this feature, reverting to infinite memory (optional, default: 0)

	PersistenceX

	a positive argument sets the persistence of the plot to the given width in units of the horizontal axis, calling with a zero argument turns off this feature, reverting to infinite memory (optional, default: 0.0)

Example configuration

{
 "Client": {
 "ClientDescription": "A simple plotter.",
 "ClientName": "TestPlotterSync",
 "ClientShell": false,
 "GroupName": "PlotterDemo",
 "ScenarioName": "PlotterSync",
 "WriteDataDirURI": "file:///C:/Development/lablink/plotter",
 "labLinkPropertiesUrl": "http://localhost:10101/get?id=ait.all.all.llproperties",
 "syncHostPropertiesUrl": "http://localhost:10101/get?id=ait.test.plotter.sync.sync-host.properties"
 },
 "Input": [
 {
 "Connected": true,
 "DataType": "Double",
 "Impulses": true,
 "InputID": "Input1",
 "LineStyle": "dashed",
 "MarksStyle": "dots",
 "Unit": "Unit1"
 },
 {
 "DataType": "long",
 "InputID": "Input2",
 "WriteToFile": true
 }
],
 "Plot": {
 "AutomaticRescale": false,
 "DisplayGrid": true,
 "PersistencePoints": 0,
 "PersistenceX": 0,
 "Title": "Asynchronous Plotter Demo",
 "XLabel": "runtime in s",
 "XMax": 60,
 "XMin": 0,
 "YLabel": "test data",
 "YMax": 10,
 "YMin": -10
 }
}

Prerequisites

Required Lablink resources

The following Lablink resources are required:

	Configuration Server [https://ait-lablink.readthedocs.io/projects/lablink-config-server]: config-0.0.1-jar-with-dependencies.jar

	Datapoint Bridge [https://ait-lablink.readthedocs.io/projects/lablink-datapoint-bridge]: dpbridge-0.0.1-jar-with-dependencies.jar

	Simple Sync Host [https://ait-lablink.readthedocs.io/projects/lablink-sync-host)]: sync-0.0.1-jar-with-dependencies.jar

When building from source, the corresponding JAR files will be copied to directory target/dependency.

Starting the configuration server

Start the configuration server by executing script run_config.cmd [https://github.com/AIT-Lablink/lablink-plotter/blob/main/examples/0_config/run_config.cmd] in subdirectory examples/0_config [https://github.com/AIT-Lablink/lablink-plotter/tree/main/examples/0_config].
This will make the content of database file test-config.db available via http://localhost:10101.

Note

Once the server is running, you can view the available configurations in a web browser via http://localhost:10101.

See also

A convenient tool for viewing the content of the database file (and editing it for experimenting with the examples) is DB Browser for SQLite [https://sqlitebrowser.org/].

MQTT broker

An MQTT broker is required for running the example, for instance Eclipse Mosquitto [https://mosquitto.org/] or EMQ [http://emqtt.io/].

Example 1: Asynchronous plotter

All relevant scripts can be found in subdirectory examples/1_async [https://github.com/AIT-Lablink/lablink-plotter/tree/main/examples/1_async].
To run the example, execute all scripts either in separate command prompt windows or by double-clicking:

	dpb.cmd [https://github.com/AIT-Lablink/lablink-plotter/blob/main/examples/1_async/dpb.cmd]: runs the data point bridge service, connecting the data source and the plotter

	source.cmd [https://github.com/AIT-Lablink/lablink-plotter/blob/main/examples/1_async/source.cmd]: runs the data source, which will send data to the plotter

	plot.cmd [https://github.com/AIT-Lablink/lablink-plotter/blob/main/examples/1_async/plot.cmd]: runs the plotter, which will plot incoming data to the screen (and write one of the inputs to a CSV output file)

Note

The order in which the scripts are started is arbitrary.

Example 2: Synchronous plotter

All relevant scripts can be found in subdirectory examples/2_sync [https://github.com/AIT-Lablink/lablink-plotter/tree/main/examples/2_sync].
To run the example, execute all scripts either in separate command prompt windows or by double-clicking:

	dpb.cmd [https://github.com/AIT-Lablink/lablink-plotter/blob/main/examples/2_sync/dpb.cmd]: runs the data point bridge service, connecting the data source and the plotter

	source.cmd [https://github.com/AIT-Lablink/lablink-plotter/blob/main/examples/2_sync/source.cmd]: runs the data source, which will send data to the plotter

	plot.cmd [https://github.com/AIT-Lablink/lablink-plotter/blob/main/examples/2_sync/plot.cmd]: runs the plotter, which will plot incoming data to the screen (and write one of the inputs to a CSV output file)

	sync.cmd [https://github.com/AIT-Lablink/lablink-plotter/blob/main/examples/2_sync/sync.cmd]: runs the sync host

Note

Start the data point bridge and the clients first (in arbitrary order).
Before you start the sync host, make sure that the clients are already connected to the data point bridge (check status messages of data point bridge).

Index

 nav.xhtml

 Table of Contents

 		
 AIT Lablink Plotter

_static/plus.png

_static/minus.png

_images/plot.png
BlW|FIE|

10

12

14 16
runtime in's

18

20

22

24

26

28

£l

Pause

Inputt (Unit1) =
Inputz =

_static/file.png

